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Tensors can be regarded as entities linked to definite particles in a
moving continuum, It is, further, possible to intreduce, in many senses,
individual derivatives with respect to time i.e. the rates of change of
tensors.

It is easy to formulate a complete theory of differentiation of
tensors of arbitrary order with respect to a scalar parameter if use is
made of known techniques of operating on tensors [1,2 ] regarded as in-
variant entities and represented in the form of symbolic sums

T = T7 ;7 9,9%, (1)

Here 32 and 5* {a = 1, 2, 3) are the covariant and contravariant base

vectors of the coordinate system. These vectors can be functions of posi-
tion in space and of time t.

In a manner similar to that which is used when different velocity
vectors are employed in the mechanics of a rigid body, the study of the
motion of a deformable continuum can be conducted with the aid of suit-
able rates of change of tensors which can be defined in various ways.

In his lecture, W. Prager introduced intuitive considerations on four
different forms of the stress rate tensor in Cartesian coordinates which

The present paper represents a more detailed development of the
author’s contribution to the discussion on W. Prager’'s lecture "An
elementary discussion of definitions of stress rate" which he gave at
the First All-Union Congress on Theoretical and Applied Mechanics in
January 1960 in Moscow.
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were proposed, respectively, by Jaumann [ 3], Cotter and Rivlin [41],
Oldroyd [ 51, and Truesdell [61].

In the theory of plasticity and visco-elasticity, as well as in other
cases, Prager favored Jaumann’s definition because it excludes the
effect of rotation of the neighborhood of the particle considered, and
because the derivatives with respect to time of the invariants of the
stress tensor vanish simultaneously with the stress rate.

Tigh tha 1nnear annnactian haotwansn tha
01186 Uiie 1niiel COoNnNeciion oeiween uie

Tn what follows we shall

above rates of change of tensors in arbitrary, curvilinear coordinate
systems., We shall introduce additional rate-of-change tensors which have
an essential significance, and we shall show that Prager’s argument on
the basis of which he demonstrated the superiority of Jaumann’s repre-
sentation is insufficient to define the concept of the stress rate.
Furthermore, we shall introduce supplementary concepts which will allow
us to establish, on the hand of examples, the rules for the application
of the derivatives of a tensor with respect to a parameter in different
senses,

Let us consider curvilinear systems of coordinates in which the
*juggling" of indices is accomplished with the aid of a fundamental
metric tensor

G = gip'al = glia;p; = §;ia

where the square of the element of length ds is given by the formula
ds® = g qda* daP, 8.5 = (8a, 28)

We shall consider some moving medium which fills the space in a con-
tinuous way. Let the particles of the continuum be identified with the
aid of a Lagrangean system of coordinates &!, £2, £3, defined in a moving
curvilinear system of coordinates, that is linked to the medium and
possessing base vectors 3 and »' (i = 1, 2, 3). The quantities &, &2,
&3 can be regarded as coordinates 1in a flxed system with the base
vectors ay and 3 which coincide with the moving system 3; and 3 at

some initial instant of time t,.
We shall denote by x!, %%, x® the coordinates of the points of space
with bases o' and »; in the reference system with respect to which the

motion of the moving continuum is determined.

The law of motion is represented by functions of the form

i — i (E', g2 3 t)
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We shall denote by r the radius-vector of the points of the space, and
after determining the base vectors we have

dr = dz%s,,  dr =d%8,,  dr, = di*a, (2)

The velocities of the particles are determined by the equations

dr az* A
V= (a’i)zi = i % = U0 = V0, @)
It is evident that to every tensor defined in the deformed space
whose metric is

ds? = g}aBdS“ &P = 8, p dr* daP

there correspond several different tensors, with different components de-
fined in the space of initial states whose metric is

dsg = g, d"dF,  gup = (5a- 08}

Different tensors will be obtained for different fixed systems of co-
variant and contravariant indices for which the equality of components is
achieved. The components of corresponding tensors in different spaces in
the second system of indices, different from the fixed one, turn out to
be different. For example

Aot A AnA o Share ¢ o
T = 7% 5,8%,, T = 1% a,0%,
where
Ta-*{__iva-Y 1"1 y__* Tm-*( iv y__° ,;vm-*r
g.-= 4 .g., aﬁ-~gm .3.#= af = Bawl 5.

O
To one tensor T there correspond several tensors in the deformed space.

The differentiation of tensors of arbitrary order with the aid of the
representations in (1) reduces itself to the differentiation of the com-
ponents and base vectors and is completely analogous to the problem of
the differentiation of vectors.

From (2) and (3) it is easy to derive the formulas

d5 N ds" A

l_i?! = Viv“aa \ ar = — ng’aﬁ

da; « ot . 4)
i = UAI‘M, " a‘ = — v)‘I‘}\QIBﬁ

where
F';f: igia (?53_“ ,ai"i__?é"f)
s 2 A’ o oz
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We shall consider, additionally, a Cartesian base i, i,, i, vhich
rotates with respect to the reference system 3; with a given angular
velocity Q = Q,BiB' For the derivatives di,/dt we can write

di
-;i-% == £ X g = Qﬁfllﬁ (5)
Here

Qp=—Qpp=+Q;, Qu=—Qu=—0;, Qpu=—Qp=—0,
-Qn = sz == Qsa = O, ‘ng = Qij

Any tensor H of the second order can be represented in the following
alternative forms

Asas s.A A LSRN §3/ A rap *id, o
H = hija’a’ = h?jBiBJ = hi?a’a,- == h”aiaj = h”{‘)ﬁj = h 21115 (6)

The systems 2 and 5;‘ can be regarded as being Cartesian. The system
i, considered in the course of time, is intrinsically curvilinear. If we
set t = t,, we can assume that all three systems coincide at the given
instant (they can be curvilinear or Cartesian).

To tensor H there correspond the different tensors
[ h oioj 3 hi’o Oj o k_joio 9 hijo °
H, = hipv, H, = hipo, H; = hi29's;, H, = h”3;; Q)

We shall regard all components of the tensors H and l‘ii defined in the
different, alternative ways as functions of the Lagrangean variables &°
and the time t. From (7) and (6), in view of (4) and (5), we see that the
different derivatives with respect to time ¢t are given by the equations

dh, . o, o dhti o

dH, _ Ghij o305 o _ oo - g
V=Tt =009, Va= 5o, Vo= grad; ®)
‘d}lu Agal ’,d}i":’.- . i. A A
ég. = (_ég R Viv® — hyy vjv«») 0% = (i + By Vi — Kl vjvw) 20’ =

B wj . . YN anii oy ipwf e ipie
= 7T'+k Vot + B Vvl ) 9i9; = T [k + 0GR | aipy =

dr' h*iji. i h*imgj. .o (9
=\t ot ‘o | Lil 9
The analogous expression for the derivatives of hlJ has been omitted

here for the sake of brevity.

Taking into account that at a given instant of time the bases 3; and
A - - - - -
9; coincide, we obtain the following formulas which are satisfied in
curvilinear systems of coordinates:
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dhi' dh’.. ® v
i i v 90
W = dt + hu)] axi + h‘lw 6$7 (10)
drti  dh' 9t i 00t
T =@ e e (11)
dnt;  aw't ot 1. ov®
Jo_ -j _ m.. 1 i _U—
=g i TS (12)

If h.; is a symmetric tensor, then tensors (10) and (11) are also sym-
metric, but tensor (12) and the tensor for dh7/dt are, in general, asym-
metric.

Taking into account that the system i, coincides with the system 9;, we
can derive one more formula in a Cartesian system which is applicable
irrespective of the method of arranging indices

dn'ti  gn'i ‘ajey ie ey §
=R — R, (13)

The left-hand sides of (10), (11), and (12) contain the components of
different tensors; to these tensors in the space of intial states, there
correspond different tensors ¥V, and, correspondingly, different tensors
V; in the deformed space. The quantities dh'iu/dt and others are not com-
ponents of tensors; they can be regarded as components of tensors only in
a Cartesian system of coordinates.

The formulas in Equations (10) and (11) have been discussed in
Prager’s lecture. Here, the formula in (11) corresponds to the one intro-
duced by Oldroyd [4 ], and the formula in [10 ], to that introduced by
Cotter and Rivlin [3 ]. The derivatives for dhl}/dt and dhtfj/dt were not
mentioned in Prager’s paper. ’ )

In nonlinear elasticity, the ratios of the components of the stress
tensor and the density p*//p = 6% turn out to be thermodynamic quantities
which possess a potential. The derivative (11) taken for olJ after the
substitution of p*//p for o'/ and after mltiplication by p turns out to
be the derivative* of p*J in Truesdell’s sense [6]. Along with this
derivative, it is possible to consider other analogous derivatives which
are consequences of Equations (10), (12) and (13).

When generalizing the theory of small elastic and plastic deformations
to include the case of finite deformations, it is probably fruitful to

* This fact was clarified by Aspirant V.D. Bonder.
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eliminate the tensor ¢*/ in favor of the tensor p*/ in the corresponding
formul as.

Let us consider the tensor of finite deformations ¢ and the tensor e
of the velocities of deformation. We then have by definition

A 1gn =
¢ = £;09’ = g;j'a'l (Et‘f = 5 (g — gii)> (14)
e = ei,-z;iéj = eij’aiaj (eij = % (V{Uj + Vjvi)) (15)

. ~j CL
At the instant when the bases @ and 3' coincide, we have
gjj = E{j', €i; = ei,-', Sji = Ej'i etc.

Taking this into account, the definitions in (14), (15), together with
Equations (10), (11), and (12), yield

de,. de. .’ w® v
e~q =% g Foeigat e g
ds’; ; de;? avt av*
.3 i. o - f] a- Y i- 27
o ~—d=¢; (8% —2"%) = - — it el (16)
de't iy § i j jo i de’¥l .ot ol
o o — paB T L Jaoty __ 88 7 ewjfY  eie OV
€ @i e (3a 83 28, €p 25.58.4) at g 9% € 72

These systems of derivatives represent essentially different tensors
e, ¢, e”. which vanish when the system moves as a rigid body. When the

’

deformations are infinitesimal, we have e = ¢’ = e”.

The systems of derivatives
. e 4
de; de’’; de
dt dt dt
in curvilinear coordinates are not tensors; they are different from zero
when the system moves as a rigid body.

If the base vectors i, rotate with the angular velocity of the prin-
cipal axes of tensor e, equal to zero, then in any system of coordinates
we can write

1 (97, 0vﬁ>
Q=5 (55— 58 (17)

In this case Equation (13) determines the components of the derivative
tensor introduced by Jaumann.

Taking into account that 2= 3;=i; as well as (17), Equations (12)
and (13) lead to
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ah';  dre dn’t

_di_J = T — ha)ea1+ hmeaq + Afj (18)

— 1
dt '
It is easy to see that if tensor h;. is symmetric, then tensor
dh"’/dt is also symmetric and that temsor A;; is anti-symetric.

Next we consider the case when H is a symmetric tensor. It is evident
that 4 0 if the principal axes of tensors H and e coincide. If P de-
notes tfle stress tensor, then in the case of a nonlinear elastic, 1iso-
tropic body, the tensors P and e possess, in general, different principal
axes, and in this case Aij £ 0. If H= ¢, we may write

ds}  (de}\*
— — el ¢
Fr (dt ) +eae €. (19)
[¢]

The systems of invariants for the tensors H and H, age idenfical but,
in general, they differ from the invariants of tensors H, and H,. For
example, the second invariants for tensors ﬁ, and H can be written

Jo= R o = gor B PRBs
Jo= K5hE = Bar Bk = Geraen, P e 4 hearBp koo +J,

If the derivatives dhii/dt, determined by Equations (11), are equal to
zero, then dJ2/dt =0, and, in general, the magnitude of dJ,/dt differs
from zero.

It is evident that the derivatives of any invariants of tensor i
vanish simultaneously with dh'//dt, determined by Equation (11), and that
the derivatives of the invariants of H,, vanish simultaneously with the
derivatives of dhij/dt, determined by Equation (10).

It is easy to see that the derivatives of any invariants of tensor ’?2
in the space-of initial states and of tensor H in the deformed space
vanish when dh‘)/dt 0 in accordance with Equation (12), or when
h*: /dt = 0 in accordance with Equation (13), assuming the validity of
Equation (18). The formulas for the elemegtary increments from any cor-
respondingly equal invariants of tensors H, and H are identical owing to
the increments dh'® and dh"" which are connected by Equation (18). The
preceding argument is valid “also in the case when Alj is an arbitrary
antisymmetric tensor.

When physical laws are formulated, the mechanical processes undergone
by a particle are described from Lagrange’s point of view. The formula-
tion of equations of motion with respect to reference systems can be
carried out in fixed coordinate systems with respect to the initial space
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or in moving Lagrangean systems in the deformed space. In either case it
is possible to introduce rates-of-change of tensors (for the strain
tensors, for the stress tensors, for the ratio of the stress tensor to
density, etc.) in the senses defined by Equations (10), (11) and (12).

The use of time-derivatives, as introduced by Jaumann, can be con-
venient because in this case the effect of the rotation is excluded, and
the corresponding rate of change of a symmetric tensor turns out to be a
symmetric tensor.

The effects, connected with the existence of different derivatives
with respect to time of tensors tsken with respect to different, pre-
viously defined, vector bases may turn out to be purposeful in the theory
of motion of continua in the presence of infinitely small deformations
in cases when displacements and rotations of axes of deformation are
finite.

BIBLIOGRAPHY

1, Sedov, L.I., Osnovy nelineinoi mekhaniki sploshnoi sredy (Funda-
mentals of nonlinear mechanics of continug). Izd. Moskov. Gos.
Univ, 1959 (Notes of lectures given by the author at the Moscow
State University in 1856-1958).

2. Lagally, M., Vorlesungen uber Vektor-Rechnung, Leipzig, 1928,

3., Jaumann, G., Grundlagen der Bewegungslehre. Leipzig, 1905,
See also Sitz. Ber. Akad. Wiss. Wien. IIa Vol, 120, p, 385, 1911,

4, Cotter, B,A, and Rivlin, R.S.,, Tensors associated with time-dependent
stress. Q.ly Appl. Math., Vol, 13, p. 177, 1955,

5, Oldroyd, J.G., On the formulation of rheogical eguations of state.
Proc., Roy. Sec. A, Veol, 200, p. 523, 1850,

8. Truesdell, C., Correction and additions to “The mechanical founda-
tions of elasticity and fluid dynamics®™. Jour. Rat. Mech. Analysis
Vol. 2, p. 593, 1953.

Translated by J.K.



