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Tensors can be regarded as entities linked to definite particles in a 
moving continue. It is, further, possible to introduce, in many senses, 
individual derivatives with respect to time i.e. the rates of change of 
tensors. 

It is easy to formulate a complete theory of differentiation of 
tensors of arbitrary order with respect to a scalar paraneter if use is 
made of known techniques of operating on tensors 1 1,2 1 regarded as in- 
variant entities and represented in the form of symbolic sums 

here ~a and 9 (a = 1, 2, 31 are the covariant and contravariant base 
vectors of the coordinate system. ‘lhese vectors can be functions of posi- 
tion in space and of time t. 

In a manner similar to that which is used when different velocity 
vectors are employed in the mechanics of a rigid body, the study of the 
motion of a deformable continuum can be conducted with the aid of suit- 
able rates of change of tensors which can be defined in various ways. 

In his lecture, W. Prager introduced intuitive considerations on four 
different forms of the stress rate tensor in Cartesian coordinates which 

* The present paper represents R more detailed development of the 
author’s contribution to the discussion on W. Prager’s lecture “An 
elementary discussion of definitions of stress rate” which he gave at 
the First All-Union Congress on Theoretical and Applied Mechanics in 
January 1960 in Moscow. 
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were proposed, respectively, by Jaumann I3 1, Cotter and Rivlin [ 4 1 , 
Oldroyd [ 5 1 , and Truesdell [ 6 1. 

In the theory of plasticity and visco-elasticity, as well as in other 
cases, Prager favored Jaumann’s definition because it excludes the 
effect of rotation of the neighborhood of the particle considered, and 
because the derivatives with respect to time of the invariants of the 
stress tensor vanish simultaneously with the stress rate. 

In what follows we shall establish the inner connection between the 
above rates of change of tensors in arbitrary, curvilinear coordinate 
systems. We shall introduce additional rate-of-change tensors which have 
an essential significance, and we shall show that Prager’s argument on 
the basis of which he demonstrated the superiority of Jaumann’s repre- 
sentation is insufficient to define the concept of the stress rate. 
Furthermore, we shall introduce supplementary concepts which will allow 
us to establish, on the hand of exqles, the rules for the application 
of the derivatives of a tensor with respect to a parameter in different 
senses. 

Let us consider curvilinear systems of coordinates in which the 
“juggling* of indices is accomplished with the aid of a fundamental 
metric tensor 

where the square of the element of length ds is given by the formula 

ds2 = gapdxa dxb, g,, = @a, %I 

We shall consider some moving medium which fills the space in a con- 
tinuous way. Let the particles of the continuum be identified with the 
aid of a Lagrangean system of coordinates t’, c2, c3, defined in a moving 
curvilinear system of coordinates, that is linked to the medium and 
possessing base vectors 2 and 2 (i = 1, 2, 3). The quantities tl, e*, 

C3, can bz regardF.d as coordinates in a fixed system with the base 
^i 

vectors aif and a’ which coincide with the moving system 4 and 3 at 
some initial instant of time tO. 

We shall denote by x1, z2, x3 the coordinates of the points of space 
with bases ni and ni in the reference system with respect to which the 
motion of the moving continuum is determined. 

The law of motion is represented by functions of the form 

xi = xi@, E2, 53, t) 
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k shall denote by r the radius-vector of the points of the space, and 
after determining the base vectors we have 

dr =I dx%,, dr = dE”&, dr, = dE%, 

The velocities of the particles are determined by the equations 

(2) 

It is evident that to every tensor defined in the deformed space 
whose metric is 

there correspond several different tensors, with different components de- 
fined in the space of initial states whose metric is 

Different tensors will be obtained for different fixed systems of co- 
variant and contravariant indices for which the equality of components is 
achieved. The components of corresponding tensors in different spaces in 
the second system of indices, different from the fixed one, turn out to 
be different. For example 

T = Fir ;;,;%Y, + = Pi: ;& 

where 

$4,: = +a;:, 9&r = ~,,Py + iyp:= .&py 

To one tensor f there correspond several tensors in the deformed space. 

The differentiation of tensors of arbitrary order with the aid of the 
representations in (11 reduces itself to the differentiation of the com- 
ponents and base vectors and is completely analogous to the problem of 
the differentiation of vectors. 

From (2) and (3) it is easy to derive the formulas 

where 

diii 
-- = v.itPi& ) 

dt 

dai 

Z = v xl? )iiaaa, 

= - vpi;* 
dsi 
dt = - 

VThpiafi 
(41 
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We shall consider, additionally, a Cartesian base i,, i,, i, which 
rotates with respect to the reference system ai with a given angular 
velocity !A = flpip. For the derivatives di,/dt we can write 

Any tensor H of the second order can be represented in the following 
alternative fonns 

H 3 h,,~.~j = hf;$j -_ h;(g$ _- },“$& = h’ij3i3i = heijiiii (6) 
~ The systems @ and & can be regarded as being Cartesian. The system 
ai, considered in the course of time, is intrinsically curvilinear. If we 
set t = ta, we can assume that all three systems coincide at the given 
instant (they can be curvilinear or Cartesian). 

To tensor H there correspond the different tensors 

We shall regard all components of the tensors H and ifi defined in the 
different, alternative ways as functions of the Lagrangesn variables 5’ 
and the time t. From (7) and (61, in view of (4) and (S), we see that the 
different derivatives with respect to time t are given by the equations 

P ~ d& _ dhij Oi”j dhi’. o 0. 
1 dt dt 3@* 

0, = -$3$, 

The analogous expression for the derivatives of hi! has been omitted 
here for the sake of brevity. 

Taking into account that at a given instant of time the bases 3i and 
& coincide, we obtain the following formulas which are satisfied in 
curvilinear systems of coordinates: 
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d,$ dh’ . 
3- 

olt= dt 
h 

wj a& 
- _$“‘$ 
8X0 

dhf; _ dh’f; 
-_ 

dt- dt 
h ‘f;-$ + ht,:; 

(10) 

(11) 

(12) 

If bib is a symmetric tensor, then tensors (10) and (11) are also sym- 

metric, ut tensor (12) and the tensor for dhii/dt are, in general, asym- 

metric. 

Taking into account that the system ii coincides with the system ai, we 

can derive one more formula in a Cartesian system which is applicable 

irrespective of the method of arranging indices 

dh’ii dh’ii, h’aj~ I; _ h’iaQ. ja 

dt= dt 
(13) 

'Ihe left-hand sides of (lo), (111, and (12) contain the components of 

different tensors; to these tgnsors in the space of intial states, there 

correspond different tensors Vi and, correspondingly, different tensors 

Vi in the deformed space. The quantities dhIj/dt and others are not com- 

enents of tensors; they can be regarded as components of tensors only in 

a Cartesian system of coordinates. 

'Ihe formulas in EZquations (10) and (11) have been discussed in 

Prager's lecture. Here, the formula in (11) corresponds to the one intro- 

duced by Oldroyd [4 I, and the formula in [lo I, to that introduced by 

Cotter and Rivlin [3 1. 'Ihe derivatives for dht)/dt and dhti/dt were not 

mentioned in Prager's paper. 

In nonlinear elasticity, the ratios of the components of the stress 

tensor and the density p'j/p = u ij turn out to be thermodynamic quantities 

which possess a potential. 'Ihe derivative (11) taken for oij after the 

substitution of pijip for oij and after multiplication by p turns out to 

be the derivative* of p'j in Truesdell's sense [6 1. Along with this 

derivative, it is possible to consider other analogous derivatives which 

are consequences of Equations (lo), (12) and (13). 

Nhen generalizing the theory of small elastic and plastic deformations 

to include the case of finite deformations, it is probably fruitful to 

* This fact was clarified by Aspirant V.D. Bonder. 
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. . 
eliminate the tensor oij in favor of the tensor paI in 
foimul as. 

the corresponding 

Let us consider the tensor of finite deformations c and the tensor e 
of the velocities of deformation. We then have by definition 

a=s &j=E..~ai~ 
ij 11 (Eij = $ (i<j - iij)) 

6 = e ij &j = e .‘&j 
i3 ( 

eij = + (vivj + Ojui)) 

At the instant when the bases 2 and ai coincide, we have 

(14) 

(15) 

I 
Eij = E{j , 

I 
eij = eij , Eji = &jfi etc. 

Taking this into account, the definitions in (141, (151, together with 
Equations (101, (111, and (121, yield 

de.. deij’ w 

e’- 2 = eij = 
au, 

dt 7 + Eoj ‘ca + Eio --: 
a23 

(16) 

e” - 
de’f 

de’ij ’ 

dt-= 
eQb (6,iQ _ 26,&j _ 2$$;) = dt _ pj !!I&. _ ~{a !jt$ 

These systems of derivatives represent essentially different tensors 

e, e’, ey. which vanish when the system moves as a rigid body. When the 
deformations are infinitesimal, we have e = e’ = e”. 

‘Ibe systems of derivatives 
, 

deij de’!; da’ij 

-> dt dt ’ 27 

in curvilinear coordinates are not tensors; they are different from zero 
when the system naves as a rigid body. 

If the base vectors ii rotate with the angular velocity of the prin- 
cipal axes of tensor c, equal to zero, then in any system of coordinates 
we can write 

(17) 

In this case Equation (13) determines the components of the derivative 
tensor introduced by Jaumann. 

Taking into account that ^ai= ai= ii as well as (171, Equations (12) 
and (13) lead to 
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dh:; dh*$ dh? 

dt 
= - - h,je,i+ hce,j= + -f A, 

dt (18) 

It is easy to see that if tensor hij is symnetric, then tensor 
dh’:)/dt is also symmetric and that tensor Aij is anti-symnetric. 

Next we consider the case when B is a symnetric tensor. It is evident 
that A.. 

‘h 
= 0 if the principal axes of tensors R and c coincide. If P de- 

notes t e stress tensor, then in the case of a nonlinear elastic, iso- 
tropic body, the tensors P and c possess, in general, different principal 
axes, and in this case Aij f 0. If R = C, we may write 

The systems of invariants for the tensors If and & a e 
B 

idengical but, 
in general, they differ from the invariants of tensors 1 and l?,. For 
example, the second invariants for tensors 8, andH can be written 

If the de+vatives dh’j/dt, determined by Equations (111, are equal to 
zero, then dJ,/dt = 0, and, in general, the magnitude of dJ,/dt differs 
from zero. 

It is evident that the derivatives of any invariants of tensor P, 
vanish simultaneously with dh’j/dt , determined by Equation (111, and that 
the derivatives of the invariants of fir, vanish simultaneously with the 
derivatives of dhij/dt, determined by bation (10). 

It is easy to see that the derivatives of any invariants of tensor 8, 
in the spacecof initial states and of tensor H in the deformed space 
vanish when dhi’./dt = 0 in accordance with Equation (121, or when 
dh*“./dt = 0 in’accordance with Equation ( 131, assuming the validity of 
Equik.on (18). The formulas for the elementary increments from any cor- 
respondingly equal invariants of tensors g2 and H are identical owing to 
the increments dh’? and dh*“. which are connected by Equation (181. The 
preceding arguneni’is valid ‘Also in the case when Aij is an arbitrary 
antisymnetric tensor. 

When physical laws are formulated, the mechanical processes undergone 
by a particle are described from Lagrange’s point of view. The formula- 
tion of equations of motion with respect to reference systems can be 
carried out in fixed coordinate systems with respect to the initial space 



or in moving Lagrangean systems in the deformed space. In either case it 
is possible to introduce rates-of-change of tensors (for the strain 
tensors, for the stress tensors, for the ratio of the stress tensor to 
density, etc. 1 in the senses defined by Equations (lo), (11) and (121. 

The use of time-derivatives, as introduced by Jaumann, can be con- 
venient because in this case the effect of the rotation is excluded, and 
the corresponding rate of change of a syrmnetric tensor turns out to be a 
synrnetric tensor. 

The effects, connected with the existence of different derivatives 
with respect to time of tensors taken with respect to different, pre- 
viously defined, vector bases may turn out to be purposeful in the theory 
of rnotion of continua in the presence of infinitely small deformations 
in cases when displacements and rotations of axes of deformation are 
finite. 
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